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Abstract

The closed-form heating response of a thin uniform circular wafer is obtained, in view of a new processing method for semiconductor

materials. A strain energy formulation is obtained expeditiously using Gaussian curvature and associated structural concepts. The

method is developed for generally curved wafers, which accounts for flat, spherical, cylindrical and twisted shapes. Solutions for the first

two types become available in closed form, and the deformation can exhibit a sudden change in axi-symmetrical response or a snap-

through buckling, or both: for the latter two types, a numerical solution points to progressive deformation in both without buckling. All

results are shown to compare rather well with finite element analysis.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent innovations in the processing of semiconductor
materials pose, rather fortuitously, some interesting and
novel challenges in structural mechanics, which are
addressed in this study. Of interest here is the rapid
treatment of a film (E35 nm) of cubic silicon carbide (SiC)
on a thin disk (100mm� 0.5mm) of silicon by flashlamp
irradiation [1] for ultimate use in high-integrity electrical
devices. After being uniformly heated to 1000 1C, the
composite silicon-SiC wafer suffers a pulse of high-energy
radiation for about 20ms: the intensity and shortness of
pulse melts the silicon precisely beneath the film, enabling
the dissipation of locked-in stresses, the removal of defects
in the original SiC, and the subsequent epitaxial growth of
superior SiC. Unfortunately, severe thermal gradients
distort the wafer transversely, possibly seeding irrevocable
shape changes and damage. However, the promise of
drastically reduced processing times motivates an under-
standing of the limitations of manufacturing by this
method, in pursuit of refinement and, ultimately lower
production costs.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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As a start, the non-linear thermal response for a given set
of pulse attributes can be obtained by a diffusion equation
approach [2] but deflexions do not feature, and accounting
for them in a fully coupled, thermal elastic framework is
not trivial. A simpler route assumes a de-coupled and
quasi-statical performance, and is reasonable in view of the
relative thinness of the wafer. The extremely thin SiC and
melt layers do not disrupt the material homogeneity and
isotropy within the wafer, which has the properties of
silicon given in Table 1. Determining the wafer response
under spatial variations of temperature is now sufficient,
and here, they persist only in the direction z measured
normal to the middle surface of the wafer, and are denoted
by T(z). In the absence of constraints, the wafer deflects
initially into a uniform spherical ‘‘cap’’, of a curvature, k,
equal to [3].

kT ¼

Z t=2

�t=2
zaTðzÞdz

,Z t=2

�t=2
z2 dz, (1)

where a is the linear coefficient of thermal expansion, and t

is the total thickness. For moderately large deflexions
under increasing kT, geometrical compatibility conditions
demand the build-up of in-plane strains, and k departs
from Eq. (1) as the wafer begins to stiffen. Despite the
simple geometry, a solution within an exact large-deflexion
plate formulation [4] becomes intractable for constant
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Nomenclature

a water radius
D flexural rigidity ¼ Et3/12(1�n2)
E Young’s modulus
g Gaussian curvature
M bending moment
t wafer thickness
T temperature
UB, US stored strain energies in bending and strec-

thing, respectively
Ū dimensionless strain energy ¼ U� 12(1�n)a2/

Ept5

W transverse displacement
x, y, z materials coordinates

a coefficient of thermal expansion
Dg change in Gaussian curvature
ex, ey, gxy middle surface strains
kx, ky, kxy middle surface curvatures
wx, wy, wxy change in curvatures
kT integral heating parameter
k̄ dimensionless curvature ¼ k� a2/t
sx, sy, txy middle surface stresses
f dummy parameter ¼ (1�n)/16
n Poisson’s ratio

A superscript ‘‘*’’ denotes conditions at thermal
buckling and a subscript ‘‘0’’ denotes initial
quantities before heating.
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thickness wafers, primarily, due to the development of a
boundary layer near the free edge where the disappearing
normal force and moment obviate a non-uniform deforma-
tion. Only lenticular wafers whose thickness tapers in a
precise manner to zero on the edge [5] experience uniform
deformation everywhere. Accordingly, the exact solution
shows that, when the dimensionless spherical curvature
reaches a value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð14þ 2nÞ=ð1þ nÞ

p
, where n is the

Poisson’s ratio, the axi-symmetrical mode buckles suddenly
into another mode with diverging principal curvatures,
similar to the instant curling of a strip of paper placed on a
domestic hot-plate.

These two regimes are confirmed experimentally by
Mansfield using a pair of pre-stressed rubber disks of
constant thicknesses, which are bonded together. Upon
relaxing, they either curve uniformly or curl cylindrically,
depending on the disparity of pre-stress between layers,
and presumably, would exhibit a sudden switch between
modes under progressive relaxation. This type of structural
response is not surprising given that the interfacial
mismatch between layers motivates the localised curving
of material in the same way as heating does; see the
Appendix for a formal confirmation. Furthermore, it
suggests that boundary layer effects do not disrupt the
prevalent deformation modes, as in the exact lenticular
case, at least, if the disk is thin. A reasonable corollary to
this assumption is that any non-uniform deformation near
the edge may be neglected and, for modelling purposes, the
agency of uniform curving, whether heating or locked-in
stresses, can be assumed to induce uniform changes in
Table 1

Properties of standard silicon wafer

Young’s modulus, E 130GPa

Poisson’s ratio, n 0.3

Thermal expansion coefficient, a 3.68� 10�6 1/K

Radius, a 50mm

Thickness, t 0.5mm
curvature throughout, in order to simplify the analysis. For
example, Freund [6] deals with pre-stressed wafer-film
disks, similar to Mansfield’s experiment, and captures their
change in shape by a strain energy approach and not by
solving complex partial differential equations of deforma-
tion. He finds a remarkably similar buckling curvature offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16=ð1þ nÞ
p

compared to Mansfield: the assumption of
uniform curvature does, however, preclude the free-edge
condition when deflexions are not small, and this may
account for the difference in results.
The aim of this paper is to present a compact description

of the response of a uniform wafer (thin) disk under
transverse thermal gradients, and to elucidate key features.
The derivation uses a strain energy formulation and
uniform changes in curvature for the bending performance,
as per Freund [6], but the development thereafter is
enhanced by strict concepts pertinent in the large-displace-
ment behaviour of plates and shells, and not exploited by
Freund. Attention is drawn, in particular, to the Gaussian

curvature of the wafer, and its connection to the stretching
behaviour using a well-known compatibility relationship;
in so doing, the non-linear, strain–displacement relation-
ships of von Karman [7] normally invoked for such
problems need not be considered, which substantially
curtails the analytical effort, as will be shown. The in-
plane stretching stresses under curving are then ex-
tracted straightforwardly, for inclusion in the overall
strain energy expression; but the process is framed in a
general way, and therefore, can be extended without
difficulty to a wafer with initial distortions, arising from
deliberate or poor manufacturing conditions. The govern-
ing equations of deformation are obtained by variational
means, giving way to a family of solutions enveloping
Freund’s case for a flat wafer and the snap-through
buckling of a spherical wafer, first described by Wittrick
et al. [8] in the behaviour of shallow bimetallic domes.
Predictions for a range of wafer geometries, including
singly curved (or cylindrical) and twisted wafers, are
verified by finite element analysis, which does not make
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the same simplifying assumptions of behaviour, and is a
useful comparison. As a final remark, this work differs
from that on Mansfield’s lenticular disks in notable
ways. The governing equations of deformation are derived
from simpler energy considerations, which permit a closed-
form description for uniform disks not reported previously.
The bending-stretching interaction is quantified explicitly
by the use of Gaussian curvature, which points immedi-
ately to solutions for the stretching behaviour before the
governing equations are obtained, as the strain energy
approach demands: this staggered approach helps to
underpin the understanding of physical matters, and
may usefully serve other studies of more complex
anisotropic and possibly non-uniform disks, which exhibit
similar large-deflexion instabilities during material activa-
tion, e.g. in the thermal curing of fibre-reinforced laminate
plates [9].

2. Theoretical formulation and governing behaviour

For a point located in the middle surface of wafer at
(x, y) from the centre, the initial distortion from the flat is
�w0 ¼ kx0x

2=2þ ky0y2=2þ kxy0xy, and local gradients are
small enough for kx0 and ky0 to be regarded as positive
uniform curvatures in the x and y directions, respectively,
and kxy0 to be the associated twisting curvature.
The corresponding Gaussian curvature [10] is g0 ¼

kx0ky0 � k2xy0. After deformation, the same point has
displacement, �w ¼ kxx2=2þ kyy2=2þ kxyxy, with Gaus-
sian curvature, g equal to kxky�kxy

2. The uniform changes
in curvature are therefore

wx ¼ kx � kx0; wy ¼ ky � ky0; wxy ¼ kxy � kxy0 (2)

and from Mansfield [3], the bending stress resultants per
unit length in the same directions, accounting for kT from
Eq. (1), are given as

Mx ¼ D½wx þ uwy � ð1þ nÞkT �,

My ¼ D½wy þ nwx � ð1þ nÞkT �,

Mxy ¼ Dð1� nÞwxy, ð3Þ

where D is the flexural rigidity equal to Et3/12(1�n2) and E

is the Young’s modulus. It may be noted that Eq. (1) is
assumed to be valid when the wafer is not initially flat, and
when the bending stress resultants are zero everywhere, it
may be verified that the changes in curvature, wx and wy, are
equal to kT. Thus, for low levels of heating, the wafer can
only deflect into a spherical mode with no external moment
applied along the free edge by the support conditions,
which are assumed to be simple henceforth.

As previously noted, the changes in curvature are
expected to deviate from kT when the deflexions grow
larger, and the bending moments in Eq. (3) are no longer
zero, and wafer begins to store strain energy. An expression
for the total strain energy is now sought by superposing
separate, well-known components of bending and stretch-
ing energies in terms of middle-surface parameters whilst,
for completeness, ensuring that the boundary conditions
are proper and correct. Accounting for heating requires
some modification of these components, but only in the
bending sense, since heating is presumed to produce no in-
plane distortions overall, for example, by having a linear
temperature profile, from +T, say, to �T, at the two
surfaces. The work done by the moments in Eq. (3) acting
over the edges of an element can be integrated over the
range of rotation, leading to the strain energy stored in
bending per unit area, UB, as

UB ¼
D

2
½ðwx þ wyÞ

2
� 2ð1� nÞðwxwy � w2xyÞ

� 2ð1þ nÞkT ðwx þ wy � kT Þ�, ð4Þ

which reduces to a familiar form [10] when terms in kT are
omitted. Without applying an edge moment, then strictly
speaking, UB is not completely correct; but it may be
argued that the width of the boundary layer is small
enough in practice to be neglected, as it tends to be for thin
plates and shells, and UB is sufficiently accurate for present
purposes: the matter needs a proper investigation outside
of this study. The situation for membrane behaviour,
however, is more rigorously addressed.
First, the positive in-plane stretching strains, ex and ey,

and shear strain, gxy, for the middle surface must be
compatible with its change in Gaussian curvature, g�g0
denoted by Dg, in the following manner [10]

�Dg ¼
q2�x

qy2
þ

q2�y

qx2
�

q2gxy

qxqy
. (5)

The resulting elastic laws for middle-surface stretching
without in-plane heating effects are the familiar forms

�x ¼
sx

E
� n

sy

E
; �y ¼

sy

E
� n

sx

E
; gxy ¼

2txyð1þ nÞ
E

, (6)

where the corresponding normal stresses, sx and sy, and
shear stress, txy, can be written in terms of an Airy stress-
function, F, such that [3]

sx ¼
q2F
qy2

; sy ¼
q2F
qx2

; txy ¼ �
q2F
qxqy

. (7)

Combining Eqs. (5)–(7) therefore presents an alternative
statement of the bending–stretching interaction

�EDg ¼
q4F
qx4
þ 2

q4F
qx2qy2

þ
q4F
qy4

(8)

and since Dg does not depend on x and y, F can be taken
as a general fourth order polynomial, giving way to
quadratic stresses via Eq. (7). It may be verified that if F
is selected as

F ¼
EDg

32
ðx2 þ y2Þ a2 �

x2 þ y2

2

� �
,
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where a is the radius of wafer, Eq. (8) is satisfied, with

sx ¼ �
EDg

16
½x2 þ 3y2 � a2�,

sy ¼ �
EDg

16
½y2 þ 3x2 � a2�,

txy ¼
EDg

16
2xy. ð9Þ

These expressions constitute an exact equilibrium solution
in which the middle-surface stress components vanish on
the free edge and the resultant force and shear force across
any diameter—if the wafer were divided in half—is zero.
Linear terms violate the necessary symmetry of solution
and do not appear. These stresses can now be substituted
into the familiar form of stretching stain energy density,
US [10]

US ¼
t

2E
½ðsx þ syÞ

2
� 2ð1þ nÞðsxsy � t2xyÞ�, (10)

which is added to UB, and integrated over the surface area
of wafer, to reveal the total stored energy U. Defining
dimensionless Ū ¼ U � 12ð1� nÞa2=Ept5 and k̄ ¼ k�
a2=t, it can be shown that

Ū ¼
1

2ð1þ nÞ
fðk̄x þ k̄y � k̄x0 � k̄y0Þ

2

� 2ð1� nÞ½ðk̄x � k̄x0Þðk̄y � k̄y0Þ � ðk̄xy � k̄xy0Þ
2
�

� 2ð1þ nÞk̄T ðk̄x þ k̄y � k̄x0 � k̄y0 � k̄T Þg

þ
1� n
32
½k̄xk̄y � k̄x0k̄y0 � k̄2xy þ k̄2xy0�

2. ð11Þ

Statical equilibrium states of the wafer are furnished by
stationary values of the energy qŪ=qk̄x ¼ 0; qŪ=qk̄y ¼

0; and qŪ=qk̄xy ¼ 0, and yield, respectively, after re-
arrangement

k̄x � k̄x0 þ nðk̄y � k̄y0Þ þ k̄yð1þ nÞfDḡ ¼ ð1þ nÞk̄T , (12a)

k̄y � k̄y0 þ nðk̄x � k̄x0Þ þ k̄xð1þ nÞfDḡ ¼ ð1þ nÞk̄T , (12b)

ð1� nÞðk̄xy � k̄xy0Þ � k̄xyð1þ nÞfDḡ ¼ 0. (12c)

Here, f is equal to (1�n)/16. For prescribed kT, n, kx0, ky0

and kxy0, Eqs. (12a)–(12c) uniquely determine kx, ky and
kxy. Despite the non-linearity wrought by Dḡ ð¼ k̄xk̄y�

k̄x0k̄y0 � k̄2xy þ k̄2xy0Þ, it may be eliminated between
Eqs. (12a) and (12b) to present the invariant, homogenous
relationship between k̄x and k̄y

k̄2x � k̄2y � k̄xðk̄x0 þ nk̄y0Þ þ k̄yðnk̄x0 þ k̄y0Þ

� ðk̄x � k̄yÞð1þ nÞk̄T ¼ 0. ð13Þ

If k̄x0 ¼ k̄y0, equal to k̄0, say, Eq. (13) has two linear factors
and hence, two distinct modes of deformation

k̄x � k̄y ¼ 0; k̄x þ k̄y � ½1þ n�ðk̄0 þ k̄T Þ ¼ 0. (14)

The deformation for each case must also obey Eq. 12(c),
whose character immediately becomes clear if attention is
restricted to wafers with no initial twist; then there is either
no resultant twist or the change in Gaussian curvature is
constant:

k̄xy½1� n� ð1þ nÞfDḡ� ¼ 0) k̄xy ¼ 0, (15a)

or

Dḡ ¼
1� n

fð1þ nÞ
. (15b)

Since the membrane stresses in Eq. (9) linearly depend
upon Dḡ, and the result in Eq. (15b) does not depend upon
the level of heating, then it conforms to a developable

deformation in which there is no further stretching or
increase in the stretching strain energy. However, if the
initial distortions are not axi-symmetrical, Eq. (13) does
not factorise, and there is only one mode, of non-
developable displacements.
In the following section, solutions are determined for a

number of cases in which k̄xy0 is chosen to be zero; whilst
enabling the specific solutions of Eq. (15) for transparency,
this feature does not preclude cases with initial twist if
k̄x0 and k̄y0 are set equal but opposite, and is the last case.
The first case is for a flat wafer and it reproduces Freund’s
result but confirms formally the developable post-buckling
mode. The second considers a spherical wafer, which
points to an interesting snap-through buckling. The third
and fourth cases consider wafers initially cylindrical and
saddle-shaped (twisted), and are numerical solutions with-
out any bifurcation behaviour. In all cases, the results focus
on the dimensionless edge displacements, d/t, at the ends of
the x- and y-axes, which are principal displacements
in the absence of twist and equal to ðk̄x � k̄x0Þ=2
and ðk̄y � k̄y0Þ=2, respectively, with k̄x4k̄y unless stated
otherwise.

3. Solutions

3.1. Flat wafer: Freund’s case

When k̄x0 ¼ k̄y0 ¼ 0, Eq. (13) has the two solutions

k̄x ¼ k̄y; k̄x þ k̄y ¼ ð1þ nÞk̄T ,

which are now considered separately.
For the first case, define k̄x ¼ k̄y ¼ k̄, and substitute

back into either of Eqs. (12a) or (12b), whereupon
k̄þ k̄fDḡ ¼ k̄T . From Eq. (15), the change in Gaussian
curvature is either k̄2 for no twisting curvature or equal to a
constant, (1�n)/(1+n)f, respectively, giving

k̄þ fk̄3 ¼ k̄T , (16a)

k̄ ¼
ð1þ nÞk̄T

2
. (16b)

For the second case, choosing k̄xy ¼ 0 from Eq. (15) sets
Dḡ ¼ k̄xk̄y and, if substituted back into Eq. (12a) or (12b),
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Fig. 1. Predictions of maximum and minimum out-of-plane displacements

compared to finite element analysis of the standard wafer, Table 1. The

grey line first details the solution of Eq. (16a) for pre-buckling, followed by

Eqs. (17a) and (17b) for the post-buckled behaviour. The black solid lines

are reproduced exactly from a finite element analysis for the indicated

geometry of wafer but are difficult to see, due to the overlapping

theoretical lines, except near to the bifurcation, around k̄T ¼ 5. The

dashed lines are approximate large displacement solutions found by

setting k̄�T ¼ 0 in Eq. (19).
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results in

ðaÞ k̄y½1� n� ð1þ nÞfk̄xk̄y� ¼ 0) k̄y ¼ 0,

or

ðbÞ k̄xk̄y ¼
1� n

fð1þ nÞ
.

Solution (a) is an asymptote, clarified later, but (b) is the
same solution as Eq. (15b); there is no twisting and no
change in Gaussian curvature for this mode. The ultimate
solutions can be verified as

k̄x ¼
ð1þ nÞk̄T

2
1þ 1�

64

ð1þ nÞ3k̄2T

" #0:50
@

1
A, (17a)

k̄y ¼
ð1þ nÞk̄T

2
1� 1�

64

ð1þ nÞ3k̄2T

" #0:50
@

1
A. (17b)

Real values exist only if

k̄TX
8

ð1þ nÞ3=2
¼ k̄�T ðsayÞ, (18)

which offers the slightly more compact expressions

k̄x ¼
ð1þ nÞk̄T

2
ð1þ ½1� ðk̄�T=k̄T Þ

2
�0:5Þ,

k̄y ¼
ð1þ nÞk̄T

2
ð1� ½1� ðk̄�T=k̄T Þ

2
�0:5Þ. ð19Þ

When k̄T ¼ k̄�T , both curvatures are equal to ð1þ nÞk̄�T=2,
as per Eq. 16(b), which ties the two cases together at a
single value of heating. Examination of the strain energy
confirms that less energy is stored during the axi-
symmetrical mode for k̄Tok̄�T compared to the second
mode, and vice versa; since the curvatures grow apart
immediately after this point, the wafer shape undergoes a
bifurcation, evident in the plotting of displacements later.
The corresponding curvature is denoted as k̄�, equal to
ð1þ nÞk̄�T=2 ¼ 4=

ffiffiffiffiffiffiffiffiffiffiffi
1þ n
p

, and is identical to that found by
Freund [6]. Thus, rotationally symmetrical deflexions and
wafer stretching suddenly give way to inextensional
behaviour and constant Gaussian curvature with respect
to the conditions at bifurcation.

The ‘‘choice’’ of mode for a given heating level is
formally dictated by its stability, which can be assessed
by interrogating the generalised stiffness matrix, outlined
in Guest and Pellegrino [11] for two solution variables.
For three independent solution curvatures here, this
matrix can be augmented without difficulty to yield the
form

q2Ū=qk̄2x q2Ū=qk̄xqk̄y q2Ū=qk̄xk̄xy

q2Ū=qk̄yqk̄x q2Ū=qk̄2y q2Ū=qk̄yqk̄xy

q2Ū=qk̄xyqk̄x q2Ū=qk̄xyqk̄y q2Ū=qk̄2xy

2
664

3
775, (20)

where each element corresponds to a generalised stiffness,
following the required differentiation of Eq. (11). A
particular mode of deformation is stable only when this
matrix is positive definite, which can be assured, in turn, by
all of its eigenvalues being positive. For example, it can be
verified that the present case of spherical deformation
without twist is stable provided

1þ 3fk̄240;
1� n
1þ n

� �
� fk̄240

from the closed-form eigenvalues, otherwise when k̄44=ffiffiffiffiffiffiffiffiffiffiffi
1þ n
p

¼ k̄�, the mode becomes unstable, leading to
bifurcation. The stability of other modes in the rest of this
paper are similarly confirmed but, for the sake of the
brevity, their calculation is not performed explicitly suffice
to assert the particular outcome.
Predictions are compared to a finite element analysis in

Fig. 1 using the commercially available software package,
ABAQUS [12]. In this solution, the wafer can deform
elastically with non-uniform curvature, the bending mo-
ment is set to be zero along the free edge, and geometrical
non-linearity is taken into account. A full mesh is
constructed from a mixture of triangular and rectangular
shell elements of bi-directional quadratic displacement
fields and five spatial degrees-of-freedom per node. The
nodal displacements are measured relative to the fixed
central node, and heating is simulated by prescribing the
linear temperature profile at all nodes, and increasing it
from zero. The non-linear response is carefully determined
from small strains using a dedicated Riks’algorithm [13],
which searches for the correct equilibrium path using an
arc-length method. The initial mesh is elliptically perturbed
to introduce some geometrical asymmetry so that the finite
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Fig. 2. Predictions of axi-symmetrical displacements of three spherical

wafers via Eq. (21) in which k̄0 ¼ 0:5=
ffiffiffiffi
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grey) and k̄0 ¼ 2:5=
ffiffiffiffi
f

p
(light grey), with f ¼ ð1� nÞ=16. The wafer

properties are standard, as in Table 1.
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element solver may detect the post-buckled path; the major
and minor axes lengths differ only by 0.1%, and is
sufficiently small for the pre-buckling results to be
indistinguishable from a perfectly circular wafer [14].

The correlation is very close throughout although there
is some discrepancy in the bifurcation region; the
theoretical value of k̄�T is 5.39 for n ¼ 0:3, compared to
the finite element result of 5.05, and may be due to
improper modelling of the free-edge conditions. General
agreement is quickly restored at k̄T � 6. For very large
displacements, the asymptotic solutions to Eq. (19),
k̄x ¼ ð1þ nÞk̄T and k̄y ¼ 0, which conform to a purely
cylindrical deformation, are reasonably good. If the
direction of thermal gradients is reversed, the same
behaviour is exhibited but with opposite-sense displace-
ments.

3.2. Spherical wafer: Wittrick’s case

For initially spherical wafers, k̄x0 ¼ k̄y0 ¼ k̄0, Eq. (14)
shows

k̄x ¼ k̄y; k̄x þ k̄y ¼ ð1þ nÞ½k̄0 þ k̄T �

and are identical to the flat-wafer case if k̄0 is set to zero,
leading to the same responsive modes. In particular, the
axi-symmetrical deformation has k̄x ¼ k̄y ¼ k̄ with Dḡ ¼

k̄2 � k̄20, and is governed by

k̄½1� fk̄20� þ fk̄3 � k̄0 ¼ k̄T . (21)

Interestingly, there are two stationary points and hence,
two zero-stiffness configurations are provided if
k̄041=

ffiffiffiffi
f

p
. In between these points, the equilibrium path

has negative stiffness and is unstable under progressive
heating, or cooling, as will be shown. Without heating, i.e.
when k̄T ¼ 0, Eq. (21) may be factorised into

fk̄ðk̄2 � k̄20Þ þ k̄� k̄0 ¼ 0) ðk̄� k̄0Þ½fk̄2 þ fk̄k̄0 þ 1� ¼ 0,

with the following three roots

k̄0; �
k̄0
2

1� 1�
4

fk̄20

� �0:5
" #

.

The first of these is the initial shape, and the other two are
real inverted configurations if k̄042=

ffiffiffiffi
f

p
but only the most

negative value is stable: the wafer can be inverted by
heating (or mechanically) but can only be restored if heated
by reversing the direction of thermal gradients. This
response is verified in Fig. 2 for k̄0 equal to 2:5=

ffiffiffiffi
f

p
.

Opposite-sense heating produces a very pronounced S-
curve, which intersects the vertical axis at three distinct
points when k̄T ¼ 0, and the stable portions of the curve
are synonymous with positive local gradients. In practice,
heating cannot be increased beyond k̄T ¼ �34 without a
sudden jump, or snap-through, in displacements from
approximately �3t to �12.5t, in order to follow the
equilibrium path. Cooling the wafer follows the curve back
to, and past, the stable inverted position to k̄T ¼ 10 before
jumping back to the positive part of the curve. Two other
curves are also detailed for completeness: for k̄0 ¼ 0:5=

ffiffiffiffi
f

p
,

there are no inflexion points, and for k̄0 ¼ 1:5
ffiffiffiffi
f

p
, the

gentle S-curve has only one root at the origin.
The curvatures, k̄x and k̄y, are linearly related in the

second mode, but they must also satisfy Eq. (15b) in which
the change in Gaussian curvature, now designated as
k̄xk̄y � k̄20 for no twisting, is a constant. This mode is
developable, as for a flat wafer, and the ultimate solutions
for k̄x and k̄y are found to be

k̄x ¼
ð1þ nÞ

2
½k̄T þ k̄0� 1þ 1�

k̄0 þ k̄�T
k̄0 þ k̄T

� �2
" #0:50

@
1
A,

k̄y ¼
ð1þ nÞ

2
½k̄T þ k̄0� 1� 1�

k̄0 þ k̄�T
k̄0 þ k̄T

� �2
" #0:50

@
1
A, ð22Þ

where k̄�T is the heating at the bifurcation between cases,
obtained by inspecting the relative degrees of stored energy
as

k̄�T ¼ �k̄0 þ
2

1þ n
16

1þ n
þ k̄20

� �0:5
and the corresponding wafer curvature is

k̄� ¼
16

1þ n
þ k̄20

� �0:5
.

A comparison between this approximate solution and a
finite element analysis is presented in Fig. 3. For positive
heating in which k̄T produces curvature changes in the
same sense as k̄0, the behaviour is similar to Fig. 1 but with
lower predictions of both values of k̄�T compared to the
simulation. Opposite-sense heating is recovered by assign-
ing a negative value to k̄0, all other parameters being
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Fig. 3. Predictions of maximum and minimum out-of-plane displacements

compared to finite element analysis of a spherical wafer with

k̄x0 ¼ k̄y0 ¼ 5. The wafer properties are standard, as in Table 1. The grey

lines are theoretical predictions for axi-symmetrical behaviour, Eq. (21),

and for diverging behaviour ðk̄T45 or k̄To� 15Þ, Eq. (22). Finite

element results are shown as black lines.

Fig. 4. Side-view of the wafer from Fig. 3 at the first stationary point on

reverse heating, k̄T � �6:25 and d=t � �2. The displacements have been

amplified tenfold for clarity, and the outline profile indicates the wafer

curvature along a given meridian. The grey circular arc, of constant

curvature, is drawn as a best fit to points only near the edge. The wafer is

much less curved in the centre where the departure of the arc from its

surface reaches a maximum distance.
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Fig. 5. Predictions of maximum and minimum out-of-plane displacements

compared to finite element analysis of a cylindrical wafer with

k̄x0 ¼ 5 and k̄y0 ¼ 0. For positive heating, the linear displacement derives

from k̄x, whilst for reverse heating, the same curvature produces a non-

linear displacement, and vice versa. Numerical solutions of the equations

of the approximate theory, Eq. (12), are shown as grey lines; black lines

are obtained from a finite element analysis and, for k̄T40, are overlapped

by the close numerical predictions.
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positive; but for plotting purposes, the signs are reversed.
The simulation has the same S-curve associated with snap-
through behaviour, but there are no stable inverted
positions, for this example.

The axi-symmetrical prediction underestimates the rate
of change of stiffness and severity of the snap-through
behaviour in the region of k̄T ¼ �5. The data is masked by
the range of heating but there is a slight S-curve since the
selected magnitude of k̄0, equal to 5, is just greater than the
critical value, 1=

ffiffiffiffi
f

p
¼ 0:478 for n ¼ 0:3. The most likely

reason for the discrepancy is that the wafer curvature is not
uniform. A quick confirmation is provided in Fig. 4 where
the wafer shape at the first stationary point,
ðk̄T ; d=tÞ � ð�6:25; �2Þ, can be compared to a circular
arc, drawn to have the same curvature as points near the
edge, but not necessarily elsewhere. Clearly, the arc does
not fit the wafer profile in the centre, and the curvature is
not the same throughout. Further evidence can be gleaned
from the early work of Wittrick et al. [8] on bimetallic
domes. They considered higher-order terms in the dis-
placement profile, but pursue a numerical solution to yield
a lower bound value of k̄0 of about 8:9=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� n2Þ

p
� 3:8

for n ¼ 0:3, for snap-through to prevail; for a value of 5
here, the S-curve ought to be well developed, as demon-
strated by the computational results. Nonetheless, the axi-
symmetrical prediction outside the region of snap-through
generally agrees very well, and the bifurcations do not
feature in Wittrick’s study.

3.3. Cylindrical wafer

For the singly curved case, k̄x0 ¼ k̄0 and k̄y0 ¼ 0,
Eq. (13) does not have linear factors, and there is a single,
non-developable mode of deformation and no direct
closed-form solutions for k̄x and k̄y. The simplest route,
however, solves numerically for them by, for example,
admitting Eqs. (12a)–(12c) to a least-squares solution
approach using the software package, MATLAB [15]. In
this way, k̄xy is always returned as zero, and computation
of the corresponding eigenvalues of the generalised stiffness
matrix in Eq. (20) confirm modal stability.
A typical set of results is given in Fig. 5, along with a

finite element analysis. For positive heating, the numerical
and computational solutions are practically the same, and
show that the displacements under k̄x and k̄y diverge
straightaway, with increased cylindrical distortion in the
x direction. Initially straight generators along the y-axis are
perturbed slightly into a gentle arc but appear to reach a
shallow limiting value. Asymptotic solutions to Eq. (13) are
therefore suggested as k̄y ¼ 0 and k̄x ¼ k̄0 þ ð1þ nÞk̄T ,
and are confirmed at much higher values of k̄T , but
not recorded here. Physically, the wafer accrues some
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Fig. 6. Predictions of maximum and minimum out-of-plane displacements

compared to finite element analysis of a saddle-shaped wafer with

k̄x0 ¼ 5 and � 5. For k̄T40, the larger displacements pertain to k̄x and

vice versa. Black lines belong to a finite element analysis and grey lines are

numerical predictions.
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Gaussian curvature from zero but it is already pre-disposed
to a cylindrical mode, and cannot switch into another
developable mode, as in the flat or spherical cases. There is
a small but diminishing change in the Gaussian curvature
as heating progresses.

For reverse heating, the cylindrical deformation now
favours the flat y direction over the oppositely curved
x-axis, which must unbend first before curving in the same
sense. Around k̄T ¼ �5, the displacements are the same
and the curvatures are anti-symmetrical and inverted,
k̄y � �k̄0 and k̄x ¼ 0, compared to the start; thereafter, the
asymptotic form is repeated but the development of
principal curvatures has swapped. Predictions of behaviour
are fairly good for larger values of k̄T .

3.4. Saddle wafer

Finally, consider a wafer with k̄x0 ¼ �k̄y0 ¼ k̄0, resulting
in a saddle shape, which may be viewed as being purely
twisted with respect to the axes defined by the lines y ¼ x

and �x. Despite the exact anti-symmetry Eq. (13) does not
factorise, but a set of stable solutions may be extracted in
the same numerical manner as before, see Fig. 6.

The correlation with the finite element analysis is
exceptionally close and, as might be expected, the response
is anti-symmetrical about the origin. For either direction of
heating, the wafer continues to bend cylindrically about the
axis of positive curvature whilst relieving most of the other
principal curvature. The asymptotic solutions, e.g. for
positive heating, k̄x ¼ k̄0 þ ð1þ nÞk̄T and k̄y ¼ 0, indicate a
limiting change of k̄y ¼ 0 in the Gaussian curvature as the
wafer tends towards a developable surface.
4. Summary

This study has been concerned with the elastic response of
a thin wafer with through-thickness thermal gradients. The
motivation has been to gain an understanding of semi-
conductor treatment processes, such as the flashlamp
irradiation of heteroepitaxial layers of SiC on silicon, which
depend on the imposition of non-linear temperature
distributions, thereby risking excessive deflexions and
mechanical failure of the wafer. Here, the quasi-statical
heated response has been established for a circular, constant
thickness wafer with general initial distortions from the flat.
The displacement fields are derived from the assumption of
uniform changes in curvature of the wafer, which violates
the moment-free boundary condition at the edge; but it
enables a relatively straightforward strain energy formula-
tion, in which powerful concepts associated with the
Gaussian curvature performance of the wafer provide an
elegant, compact description of the bending–stretching
interaction. The robustness of the predictions has been
confirmed through some very good correlations with a more
sophisticated finite element analysis, which lacks the
assumption of uniform curvature, for a number of different
wafer geometries. Conditions for bifurcation and snap-
through buckling phenomena have been distilled. Finally, all
results may be extended to generally distorted wafers with
locked-in stresses of the type studied by Freund [6] by simply
interchanging some terms as described in the Appendix.
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Appendix

This study obtains the same dimensionless bifurcation
curvature as Freund [6] who considers the uniform curving
of a flat, composite wafer substrate and thin film under
locked-in stresses, as if the film was removed, tensioned
and re-attached to the substrate. The inherent mismatch in
Freund’s wafer depends on the degree of interfacial strain,
em, and in dimensionless form is implied within his
expression

S ¼
3�ma2hf Mf

2h3
s Ms

, (23)

where subscripts f and s refer to the film and substrate,
each of thickness hf and hs, and elastic modulus, Mf and
Ms. The critical value, S*, to cause buckling into an
asymmetrical mode is found by Freund to be 2/(1+n)3/2. In
a very early study, Stoney [16] separately establishes the
freely developed substrate curvature, Kst, as

kst ¼
6f

h3
s Ms

(24)
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in which f is the membrane force per unit length on the
middle surface of the composite wafer; this quantity is
equal to Mfemhf and, if it is substituted back into kst, which
is then made dimensionless by multiplying by a2/t where t is
total thickness, it can be shown that

k̄st ¼ 4S) k̄�st ¼ 4S� ¼
8

ð1þ nÞ3=2
(25)

and is identical to k̄�T in Eq. (18). The result is obvious from
the simple fact that both the effects of heating and
mismatch are represented by the integral curvature para-
meters, kT and kst; and the responsible physical mechanisms
are not apparent in the mathematical formulation.
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